Preparation and Optical Properties of Europium-Activated Rare Earth Oxysulfates

P. PORCHER AND D. R. SVORONOS
Laboratoire des Eléments de Transition dans les Solides, ER 210 du CNRS, 1 Place Aristide Briand, F-92190 Meudon-Bellevue, France

and M. LESKELÄ and J. HÖLSÄ
Department of Chemistry, Helsinki University of Technology, Otaniemi, SF-02150 Espoo 15, Finland

Received June 22, 1982

Abstract

The rare earth oxysulfate series $L n_{2} \mathrm{O}_{2} \mathrm{SO}_{4}$ ($L n=\mathrm{La}, \mathrm{Gd}, \mathrm{Y}$) was synthesized by two different thermal decomposition methods. The complex ion (LnO$)_{n}^{n+}$ existing in the structure of various oxysalts seems to have a major effect on the appearance of the spectra. Then it is possible to derive sets of crystal field parameters simulating the spectra, by using the $C_{4 v} \rightarrow C_{2 v}$ descending symmetry procedure. Moreover, an alternative method for determining these parameters is described when a $C_{2 v}$ point site symmetry is distorted from $D_{3 h}$.

Introduction

Rare earth oxysulfates, described by Pitha et al. (1) in 1947 as thermal decomposition products of the corresponding anhydrous sulfates, have been recognized since then as possible intermediate products formed when sulfur-containing rare earth compounds are heated in air. They have been extensively studied mainly for their interesting physical properties, including their fluorescence spectra (2, 3). First report on their structure gave a tetragonal unit cell for $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{SO}_{4}$ (4), but subsequent study by Ballestracci and Mareschal (5) revealed the crystal system to be orthorhombic.

The unit cell parameters were determined for all lanthanoids including yttrium and they showed isostructurality (5) in con-
trast to the powder patterns published at the same time elsewhere for the lanthanum and gadolinium compounds (2). Ballestracci and Mareschal were also able to prepare single crystals suitable for X-ray study and to find out the main structural feature of these compounds: $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{SO}_{4}$ has a $(\mathrm{LnO})_{n}^{n+}$-type layer structure similar to that found, for example, in $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{MoO}_{4}$ (6) and LnOCl (7). The authors also noted the distortion of the sulfate groups, visible also in the ir spectra. All other details, including distances and angles, were left unreported, however, and a refinement of the structure has not yet appeared.
Recently, Fahey determined the structure of $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{SO}_{4}$ from X-ray power diffraction data (8). The body-centered orthorhombic cell ($a=4.2861, b=4.1938$, $c=13.720 \AA$) was confirmed and the space
group chosen was 1222 . The refinement of the structure, using, however, constrained symmetry for the sulfate group, showed that the lanthanum atom is coordinated by four oxygen anions from the ($\operatorname{LnO})_{n}^{n+}$ layer and by two oxygens from different sulfate groups. The $L n-O$ distances are 2.40 and $2.41 \AA$ in the $(\operatorname{LnO})_{n}^{n+}$ layer and $2.36 \AA$ when sulfate oxygens are involved. The point symmetry around lanthanum is C_{2}.

The present investigation was undertaken in order to study the symmetry and structure of the rare earth oxysulfates by using Eu^{3+} as an optical probe (9) and to compare the results obtained with available X-ray diffraction and ir data. Special emphasis was placed on the preparation of samples of good purity and crystallinity. Finally, a crystal fieid analysis was performed for the Eu^{3+}-doped lanthanum, gadolinium, and yttrium oxysulfates.

Materials and Methods

Preparation of the samples. The euro-pium-activated (1%) oxysulfates were prepared by two different methods both employing thermal decomposition in air as the final step but differing essentially otherwise. In both cases the obtained products were checked by chemical analysis and Xray diffraction. The starting materials were $\mathbf{9 9 . 9 9 \%}$ rare earth oxides.

The sulfite method. Coprecipitation of two rare earth sulfite hydrates, viz., the activator and the host, offers a convenient initial step in the preparation of luminescent solid solutions. The method has been applied to the preparation of the activated oxysulfites and it has been described earlier by one of us (10).

In the case of the oxysulfates, the first step was also the coprecipitation of the sulfites but afterwards the heat treatment was performed in air. Under these conditions, dehydration takes place between 150 and $300^{\circ} \mathrm{C}$ and decomposition to oxysulfate be-
tween 500 and $750^{\circ} \mathrm{C}$; the temperatures depend on the rare earth, heating rate, etc. (11, 12). It should also be noted that the stability range for the oxysulfate phase formed is limited, especially for the heavier lanthanoids and yttrium, and it may easily decompose further to oxide both in air and in an inert atmosphere (12,13).

The use of cation exchange resins. Dowex 50 W -X8 resin beds in H^{+}form were loaded by placing them in a 0.1 M HCl solution containing the activator and host lanthanoid as chlorides. The quantity of the rare earth mixture used was less than that calculated to saturate the resin beds.

Thermal decomposition conditions were chosen after several preliminary tests (further details of this preparation are given in Ref. (9)). Based on these tests and literature data (13), heating 48 hr at $650^{\circ} \mathrm{C}$ was adopted for yttrium-loaded resins, while 48 hr at $850^{\circ} \mathrm{C}$ was employed for the resins containing lanthanum and gadolinium. The heating rate in all cases was $2^{\circ} \mathrm{C} / \mathrm{min}$ up to the required temperature; afterwards a slow free cooling to room temperature was applied.

Under these conditions, the final products were found to be free of carbon and nonbound sulfur. Their crystallinity was also excellent and in the case of yttrium oxysulfate, better than with other methods. In the case of the lanthanum compounds, the sulfite method gave equally well crystallized products for gadolinium oxysulfate; the difference was not large either.

Fluorescence measurements. Fluorescence measurements were performed at 4.2, 77, and 300 K on $\mathrm{Ln}_{2} \mathrm{O}_{2} \mathrm{SO}_{4}$ ($\mathrm{Ln}=\mathrm{La}$, Gd, Y) samples doped with 1% of Eu^{3+}. The routine excitation is obtained by a 200 W mercury lamp equipped with a wideband filter centered at about $3500 \AA$ to select the mercury lines. The fluorescence emission is analyzed through a $1-\mathrm{m}$ Jarell-Ash monochromator in the 4000- to $7200-\AA$-wavelength range. The signal is de-
tected by standard techniques. Moreover, in order to avoid the superposition of lines occurring from different emitting levels (${ }^{5} D_{1}$ $\rightarrow{ }^{7} F_{3}$ and ${ }^{5} D_{0} \rightarrow{ }^{7} F_{1}$ for instance), it is possible to excite selectively the ${ }^{5} D_{0}$ level by a tunable dye laser set on the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{0}$ transition. It is then possible to attribute unambiguously all the recorded lines.

Analysis of the Spectra

The three compounds studied fluoresce reasonably well. The reddish appearance
under uv excitation shows that the most intense transitions are those with ${ }^{5} D_{0}$ as emitting level, especially the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{2}$ transition (Fig. 1). The complete recording of the spectra presents a large number of lines (approx. 50) assigned as ${ }^{5} D_{J}(J=0,1) \rightarrow$ ${ }^{7} F_{J}(J=0-4)$ (Table I). In these series the spectra are very similar: only slight modifications in the line positions indicate evolution of J level splitting. The average linewidth is about $0.5 \AA$, except for the ${ }^{5} D_{0} \rightarrow$ ${ }^{7} F_{2}$ transition ($\sim 2 \AA$).

Analysis of the spectra at different tem-

FIG. 1. Fluorescence spectra of $(\mathrm{LaO})_{2} \mathrm{SO}_{4}: \mathrm{Eu}^{3+}$ at 77 K under uv (top) and dye laser excitation.
table I
Fluorescence Transitions Observed at 77K for $(\mathrm{LnO})_{2} \mathrm{SO}_{4}: \mathrm{Eu}^{3+}$ (All Units in cm^{-1})

Assigament	$\left(\mathrm{LaO}_{2} \mathrm{SO}_{4} \mathrm{Eu}^{3+}\right.$	$(\mathrm{GdO})_{2} \mathrm{SO}_{4} \mathrm{Eu}^{3+}$	$(\mathrm{YO})_{2} \mathrm{SO}_{4} \mathrm{Eu}^{3+}$
${ }^{5} D_{1} \rightarrow{ }^{7} F_{0}$	19,037		
	19,031		
	18,973	18,960	18,956
${ }^{3} D_{1} \rightarrow{ }^{7} F_{1}$	18,823	18,806	18,807
	18,816	18,792	18,792
	18,760	18,740	18,741
	18,594		
	18,587		
	18,564		18,525
	18,526	18,528	18,508
	18,499	18,466	18,456
${ }^{s} D_{1} \rightarrow{ }^{\prime} F_{2}$	18,057	18,061	18,056
	18,016	18,049	18,044
	18,011	18,032	18,027
	17,998	17,997	18.992
	17,982	17,981	17,974
	17,951	17,930	17,923
	17,898	17,883	17,889
${ }^{3} D_{0} \rightarrow{ }^{7} F_{0}$	17,258	17,240	17,237
${ }^{3} D_{1} \rightarrow{ }^{7} F_{3}$	$17,176$		
	$17,169$		
	17,161	17,157	17,155
	17,155	17,145	17,135
	17,110		
	17,097	17,094	17,087
	$17,053$	17,069	
	17,005		
	16,945		
${ }^{3} D_{0} \rightarrow{ }^{7} F_{1}$	17,044	17,021	17,021
	16,811	16,808	16,806
	16,785	16,748	16,737
${ }^{3} D_{0} \rightarrow{ }^{7} F_{2}$	16,283	16,276	16,270
	16,268	16,263	16,257
	16,236	16,206	16,203
	16,184	16,161	16,157
${ }^{5} D_{0} \rightarrow{ }^{7} F_{3}$	15,398		
	15,385	15,369	15,368
	15,342	15,322	15,319
	15,291	15,288	15,286
	15,280	15,264	15,261
	15,256	15,232	15,225
	15,232	15,223	15,214
${ }^{3} D_{0} \rightarrow{ }^{7} F_{4}$	14,529	14,509	14,502
	$14,415$	14,406	14,411
	14,407	14,386	14,378
	14,356	14,340	14,335
	14,331	14,291	14,284
	14,272	14,256	14,253
	14,251	14.233	14.232
	14,227	14,204	14,200
	14,224	14,188	14,175

peratures underlines variations in the relative intensities of lines with different emitting levels. At 77 and 4 K transitions from
${ }^{5} D_{1}$ are relatively intense, but quite extinguished at room temperature. This fact must be related to an important nonradiative deexcitation between ${ }^{5} D_{1}$ and ${ }^{5} D_{0}$, largely depending on the temperature. By using the selective dye laser excitation, only fluorescence from ${ }^{5} D_{0}$ is recorded, permitting the construction of a partial energy level scheme for the ${ }^{7} F_{J}(J=0-4)$ ground multiplet.

By applying both group theory and electronic transition selection rules, it is possible to estimate the point symmetry of the site occupied by the rare earth. For the rare earth oxysulfate series, the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{0}$ transitions are always extremely intense. Due to its existence, one can deduce that the point site symmetry is $C_{n}, C_{n v}$, or C_{s}. The analysis of other transitions shows that not only the degeneracy of the J levels is completely lifted, but that nearly all transitions between Stark levels are observed. Three lines for ${ }^{5} D_{0} \rightarrow{ }^{7} F_{1}$ (magnetic dipole transition), seven lines for ${ }^{5} D_{0} \rightarrow{ }^{7} F_{3}$, and nine lines for ${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$ (electric dipole transitions) do not permit a point site symmetry higher than C_{2}. The only difficulty is the ${ }^{5} D_{0}$ $\rightarrow{ }^{7} F_{2}$ transition for which three very intense lines are observed, and a fourth with lower intensity; this transition appears to be accompanied by various broad and/or tiny lines, which remain under selective excitation. These lines probably have a vibronic origin; some of them may correspond to the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{0}$ transition since the vibrations of the sulfate group are around $1000 \mathrm{~cm}^{-1}$ (4). Others may be vibronics associated with the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{2}$ transitions. Finally, the ${ }^{7} F_{2}$ Stark levels can be determined by comparing this transition with ${ }^{5} D_{1}$ $\rightarrow{ }^{7} F_{2}$, this one having a magnetic dipolar and nonhypersensitive character. In spite of this, it is not possible to estimate the position of the fifth ${ }^{7} F_{2}$ Stark level. This is important, since its calculated position is completely different for the two simulating procedures used later.

Point Site Symmetry Considered for Simulation

Spectroscopic as well as crystallographic results show that the symmetry of the point site occupied by the rare earth is no higher than C_{2}. Due to the relative poorness of the energy level scheme (24 Stark levels) deduced from the data, it is unreasonable to simulate the crystal field (C.F.) effect by considering the fourteen C_{2} C.F. parameters. We shall consider a $C_{2 v}$ symmetry carrying only nine parameters. In spite of this approximation, it is unsatisfactory to conduct a realistic simulation, since the irreducible representations associated with each Stark level are not deduced from experiments on powder. Probably, several sets of C.F. parameters can simulate the spectrum accurately (14). On the other hand, the P.C.E.M. method does not constitute a convenient $a b$ initio determination of the C.F. parameters, especially when complex ions like SO_{4}^{2-} exist in the structure. However, the spectroscopic results clearly show that the C_{2} (or $C_{2 v}$) symmetry of the point site is very close to a higher symmetry. We can therefore apply the descending symmetry procedure, by considering a relatively high symmetry for the point site, involving a few C.F. parameters, then adding extra parameters in order to take into account the lowering of symmetry. The remaining problem is the choice of the higher symmetry of the point site:
(a) A point symmetry with a pseudoternary axis appears from the structure, since, according to Fahey (8), the symmetry of the polyhedron surrounding the rare earth is not far from a trigonal prism, with $D_{3 h}$ as point symmetry. In this case, the C_{2} axis corresponds to the (001) axis and the C_{3} axis to the (110) of the structure.
(b) A point symmetry with a pseudoquaternary axis is apparent from spectroscopy, and is supported by crystallographic arguments. The whole appearance of the
spectra and the energy level scheme distribution shows great analogy with other oxysalts, such as oxyhalides (15,16), oxymolybdates (17), and oxycarbonates (18). This is due to the existence of the $(\operatorname{LnO})_{n}^{n+}$ complex cation (19) in all these compounds. Consequently, the higher symmetry could be $C_{4 v}$ with (001) as z axis.

Crystal Field Calculation

The $D_{3 h} \rightarrow C_{2 v}$ Case

The simplest way to describe a C.F. potential is to choose a reference axis system for which the z axis corresponds to the highest symmetry axis. It is, however, always possible to describe this potential by referring to any axis system of the space. For instance, the classical way to describe a $D_{3 h}$ potential is to consider the ternary axis as z axis. The x, y axes are then fixed, except the rotation around z. Consequently, the number of nonzero C.F. parameters is four, according to the group transformation properties of $D_{3 h}$. We can also express the same C.F. potential by referring to a C_{2} axis, also existing in the point group, and orthogonal to C_{3}. In such a case the C.F. potential is described as $C_{2 v}$ by nine parameters, only four of them being independent. The respective Hamiltonians are written as

$$
\begin{aligned}
&{ }^{\mathrm{H}} D_{3 h}=B_{0}^{2} C_{0}^{2}+B_{0}^{4} C_{0}^{4} \\
&+B_{0}^{6} C_{0}^{6}+B_{6}^{6}\left(C_{-6}^{6}+C_{6}^{6}\right) \\
& \\
&{ }^{\mathrm{H}} C_{2 v}=B_{0}^{2} C_{0}^{2}+B_{2}^{2}\left(C_{-2}^{2}+C_{2}^{2}\right)+B_{0}^{4} C_{0}^{4} \\
&+B_{2}^{4}\left(C_{-2}^{4}+C_{2}^{4}\right)+B_{4}^{4}\left(C_{-4}^{4}+C_{4}^{4}\right)+B_{0}^{6} C_{0}^{6} \\
&+B_{2}^{6}\left(C_{-2}^{6}+C_{2}^{6}\right)+B_{4}^{6}\left(C_{-4}^{6}\right.\left.+C_{4}^{6}\right) \\
&+B_{6}^{6}\left(C_{-6}^{6}+C_{6}^{6}\right) .
\end{aligned}
$$

In order to find the relation between these two sets of parameters, we consider that under a rotation of the reference axis system, the "new" spherical harmonics should be written as a linear combination of

TABLE II
Transformation Matrices to Express the C_{q}^{*} Operators in a $C_{2 v}$ Symmetry From a $D_{3 h}$ Symmetry (The $C_{q}^{k}, q \neq 0$, and 6, Are Equal to Zero for the D_{3} Symmetry)

the "old" ones of the same rank,

$$
C_{q}^{k} \xrightarrow{\mathrm{Rot}} C_{q}^{k},=\sum_{q} a_{q} C_{q}^{k}
$$

For this study we constructed the transformation matrice $D_{3 h} \rightarrow C_{2 v}$ (Table II) by using the quantitative expression of tensorial operators as given in Prather's monograph (20).

For $D_{3 h}$, determination of the set of C.F. parameters is carried out rapidly since the ${ }^{7} F_{1}$ splitting mainly depends on B_{0}^{2} and the ${ }^{7} F_{2}$ splitting on B_{0}^{2} and B_{0}^{4}. The precise calculation of the parameters is performed by minimizing the rms deviation $\sigma=$ $\left(\frac{\Sigma \sigma_{i}^{2}}{N-P}\right)^{1 / 2}$, where σ_{i} is the individual
error, N the number of levels, and P the number of parameters involved. Table III shows the result. As expected, the rms is unsatisfactory (around $20 \mathrm{~cm}^{-1}$). Moreover, the sign B^{6} is not determined. Change in this sign does not modify the energy positions, but permutes the label of the $A_{1}^{\prime \prime}$ and $A_{2}^{\prime \prime}$ irreducible representations. This is why two starting parameter sets are considered for $C_{2 v}$.
When $C_{2 v}$ symmetry is considered, the simulation is also carried out rapidly. Finally, the C.F. parameters are close to expected values of the $D_{3 h}$ point group described along the C_{2} axis. However, the rms is rather poor, and it is impossible to choose the best set. The list of simulated energy levels is presented in Table IV. It is noteworthy that the nonobserved ${ }^{7} F_{2}$ Stark

TABLE III
Crystal Field Parameters for the $D_{3 h} \rightarrow C_{2 \nu}$ Descending Symmetry of the Oxysulfate Series

Parameter	$D_{3}{ }^{\prime}$		$C_{2 v}$	
	Along C_{3} axis	$\begin{gathered} \text { Equivalent values } \\ C_{2} \text { axis } \\ \text { sign }+: \text { sign }- \end{gathered}$	Set 1 from sign +	Set 2 from sign -
$1 B_{0}^{2}$	$-830 . \pm 23$.	415.	455. ± 13.	412. ± 14.
(B_{2}^{2}		508.	468. ± 9.	486. ± 10.
B_{0}^{4}	793. ± 29.	297.	172. ± 23.	670. ± 24.
B_{2}^{4}		313.	485. ± 16.	$352 . \pm 17$.
B_{4}^{4}		415.	$564 . \pm 13$.	421. ± 14.
B_{0}^{6}	537. ± 37.	-792.: 457.	$-441 . \pm 33$.	294. ± 28.
B_{2}^{6}		285. : -629.	462. ± 18.	$-509 . \pm 18$.
B_{4}^{6}		-355.: -22.	21. ± 26.	320. ± 18.
B_{6}^{6}	$\pm 657 . \pm 22$.	-234. - 275 .	$-151 . \pm 18$.	$-162 . \pm 27$.
σ	21.		11.5	13.
$2 B_{0}^{2}$	$-878 . \pm 24$.	439.	532. ± 14.	$519 . \pm 15$.
B_{2}^{2}		538.	448. ± 11.	472. ± 11.
B_{0}^{4}	$-752 . \pm 31$.	282.	188. ± 24.	$536 . \pm 28$.
B_{2}^{4}		297.	379. ± 17.	280. ± 19.
B_{4}^{4}		393.	494. ± 16.	425. ± 16.
B_{0}^{6}	579. ± 37.	-791.: +429.	$-823 . \pm 30$.	231. ± 34.
B_{2}^{6}		261.: -632.	320. ± 19.	$-521 . \pm 19$.
B_{4}^{6}		-366.: -40.	86. ± 17.	361. ± 21.
B_{6}^{6}	$\pm 642 . \pm 24$.	-255. - 295.	$-254 . \pm 20$.	$-324 . \pm 18$.
G	22.		13.	15.
$3 B_{0}^{2}$	$-881 . \pm 25$.	440.	$564 . \pm 14$.	$548 . \pm 14$.
B_{2}^{2}		539.	473. ± 11.	471. ± 11.
B_{0}^{4}	756. ± 32.	284.	442. ± 23.	$534 . \pm 26$.
B_{2}^{4}		299.	159. ± 20.	261. ± 18.
\boldsymbol{B}_{4}^{4}		395.	$490 . \pm 17$.	447. +15 .
B_{0}^{6}	573. ± 39.	-801.: 443.	$-872 . \pm 29$.	223. ± 32.
B_{2}^{6}		272. : -638.	262. ± 25.	$-531 . \pm 18$.
B_{4}^{6}		-367. - 36.	$54 . \pm 22$.	389. +20.
B_{6}^{6}	$\pm 655 . \pm 25$.	-252.: -293.	$-390 . \pm 23$.	$-336 . \pm 29$.
σ	22.		14.	14.

Note. $1=(\mathrm{LaO})_{2} \mathrm{SO}_{4} ; 2=(\mathrm{GdO})_{2} \mathrm{SO}_{4} ; 3=(\mathrm{YO})_{2} \mathrm{SO}_{4}$.
level is the lowest, located at about 880 cm^{-1}.

The $C_{4 v} \rightarrow C_{2 v}$ Case
This possibility is simpler to analyze since the main symmetry axes are the
same. For $C_{4 v}$ the C.F. Hamiltonian is written as

$$
\begin{aligned}
{ }^{\mathrm{H}} C_{4 v}=B_{0}^{2} C_{0}^{2} & +B_{0}^{4} C_{0}^{4}+B_{4}^{4}\left(C_{4}^{4}+C_{4}^{4}\right) \\
& +B_{0}^{6} C_{0}^{6}+B_{4}^{6}\left(C_{-4}^{6}+C_{4}^{6}\right) .
\end{aligned}
$$

Due to the great similarity of the energy level sequence of oxysulfates and oxyha-
TABLE IV
Observed and Calculated Energy Levels for Eu ${ }^{3+}$ Embedded in Rare Earth Oxysulfates. the $D_{3 h} \rightarrow C_{2 v}$ Case, (All Units in cm ${ }^{-1}$)

TABLE V
Crystal Field Parameters for the $C_{4 v} \rightarrow C_{2 v}$ Decreasing Symmetry of the Oxysulfate Series

	$\begin{array}{r} -993 . \pm 18 . \\ -687 . \pm 22 . \\ \pm 686 . \pm 18 . \\ 702 .+30 . \\ \pm 250 . \pm 16 . \end{array}$	$\begin{aligned} & -981 . \pm 9 . \\ & \pm 117 . \pm 7 . \\ & -651 . \pm 12 . \\ & \pm 258 . \pm 10 . \\ & -720 .+10 . \\ & 556 . \pm 20 . \\ & \mp 120 . \pm 22 . \\ & -278 . \pm 9 . \\ & \pm 25 . \pm 13 . \\ & 8 . \end{aligned}$	$\begin{array}{r} -991 . \pm 16 . \\ \pm 68 . \pm 9 . \\ -674 . \pm 19 . \\ \pm 114 . \pm 33 . \\ 685 . \pm 15 . \\ 675 . \pm 27 . \\ \mp 56 .+17 . \\ 250 \pm 15 . \\ \mp 88 . \pm 21 . \\ 13 . \end{array}$
$\begin{aligned} & 2 B_{0}^{2} \\ & B_{2}^{2} \\ & B_{0}^{4} \\ & B_{2}^{4} \\ & B_{4}^{4} \\ & B_{6}^{6} \\ & B_{2}^{6} \\ & B_{2}^{6} \\ & B_{4}^{6} \\ & B_{6}^{6} \\ & \sigma \end{aligned}$	$\begin{array}{r} -967 . \pm 20 . \\ -716 . \pm 23 . \\ \pm 667 . \pm 20 . \\ 733 . \pm 32 . \\ \pm 273 . \pm 18 . \\ 17 . \end{array}$	$\begin{gathered} -968 . \pm 9 . \\ \pm 195 . \pm 6 . \\ -783 . \pm 11 . \\ \pm 348 . \pm 12 . \\ -585 . \pm 11 . \\ 636 . \pm 18 . \\ \pm 187 . \pm 34 . \\ -241 . \pm 9 . \\ \hline 27 . \pm 15 . \\ 7.2 \end{gathered}$	$\begin{array}{r} -960 . \pm 9 . \\ \pm 84 . \pm 7 . \\ -707 . \pm 12 . \\ \pm 41 \pm 10 . \\ 650 . \pm 10 . \\ 714 . \pm 19 . \\ \pm 73 . \pm 22 . \\ 278 . \pm 9 . \\ \mp 109 . \pm 14 . \\ 12 . \end{array}$
$\begin{array}{lll} & 3 & B_{0}^{2} \\ & B_{2}^{2} \\ & B_{0}^{4} \\ & B_{2}^{2} \\ & B_{4}^{4} \\ & B_{0}^{6} \\ & B_{2}^{6} \\ & B_{6}^{6} \\ & B_{6}^{6} \\ & \sigma \end{array}$	$\begin{aligned} &-987 . \pm 20 . \\ &-723 . \pm 24 . \\ & \pm 626 . \pm 20 . \\ & 669 . \pm 35 \\ & \pm 294 . \pm 10 . \\ & 18 .\end{aligned}$	$\begin{gathered} -1007 . \pm 9 . \\ \pm 204 . \pm 5 . \\ -784 . \pm 10 . \\ \pm 348 . \pm 11 . \\ -582 . \pm 10 . \\ 684 . \pm 12 . \\ \pm 192 . \pm 31 . \\ \hline 224 . \pm 16 . \\ \mp \quad 49 . \pm 14 . \\ 6.9 \end{gathered}$	$\begin{array}{r} -983 . \pm 15 . \\ \pm 92 . \pm 9 . \\ -710 . \pm 18 . \\ \pm 47 . \pm 32 . \\ 617 . \pm 15 . \\ 655 . \pm 25 . \\ \mp 69 . \pm 20 . \\ 300 \pm 14 . \\ \mp 105 \pm 19 . \\ 13 . \end{array}$

Note. $1=(\mathrm{LaO})_{2} \mathrm{SO}_{4} ; 2 \quad(\mathrm{GdO})_{2} \mathrm{SO}_{4} ; 3=\left(\mathrm{YO}_{2} \mathrm{SO}_{4}\right.$.
lides (16,17), and also due to the presence of the same (LnO$)_{n}^{n+}$ layer, we may use the C.F. parameters of the oxyhalides as starting values. Final $C_{4 v}$ C.F. parameters of the oxysulfates are not very different (Table V). When the $B_{2,6}^{k}$ extra parameters are added the rms decreases to $8 \mathrm{~cm}^{-1}$, giving a good simulation of experimental levels (Table VI). Only one of the $C_{4 v}$ starting C.F. parameter sets gives a good simulation, contrary to the preceding case. If this type of simulation is correct, it means that we can now fix the sign of the $B^{\frac{k}{4}}$ parameters for the rare earth oxyhalides series. This time, the nonobserved ${ }^{7} F_{2}$ level is the upper one.

Conclusion

Finally, the procedure of descending symmetries can be applied to any simulation of an energy level scheme, when spectroscopic evidence shows that the real point site symmetry can be considered as distorted from a higher symmetry, and when measurements on single crystals are not performed. For the oxysulfate case, we determined sets of C.F. parameters simulating the experiment more or less correctly. Curiously, it appears that one of the ways to decide on the best procedure should be the observation of the fifth ${ }^{7} F_{2}$ Stark level, with completely different positions in the two simulations. In fact, the $C_{4 v}$ $\rightarrow C_{2 v}$ descending symmetry procedure is probably the most realistic. This is not oniy because of a better rms since the $C_{2 v}$ symmetry is always only approximate, but because the observed spectra are very similar to those of other oxysalts. More precisely, some of them (the oxyhalides) have a pure $C_{4 v}$ point symmetry, and their spectra resemble those of the oxysulfates. Also, we note that the ${ }^{5} D_{0} \rightarrow{ }^{7} F_{0}$ transition is intense. This is a further argument in favor of this procedure, since this transition is also allowed in $C_{4 v}$, but prohibited in $D_{3 h}$; if the slight symmetry distortion is conserved, a low intensity can be expected for this transition in the $D_{3 h} \rightarrow C_{2 v}$ case.

It appears that all atoms of the same type, surrounding a central ion, do not have the same "spectroscopic weight," when the nature of bonding creates a complement to the classical properties of the symmetry. In the special case of oxysalts, the available data show that the $(\operatorname{LnO})_{n}^{n+}$ complex cation has something like a "spectroscopic identity," leaving its "finger print" on the spectrum, the remaining ions being less important. We believe this to be of considerable interest for the prediction of the crystal field effect for these types of compounds.
TABLE VI
Observed and Calculated Energy Levels for ($\operatorname{LnO})_{2} \mathrm{SO}_{4}: \mathrm{Eu}^{3+}$ for the $\boldsymbol{C}_{4 \nu} \rightarrow \boldsymbol{C}_{2 \nu}$ Case (All Units in cm ${ }^{-1}$)

Level	$(\mathrm{LaO})_{2} \mathrm{SO}_{4}: \mathrm{Eu}^{3+}$					$(\mathrm{GdO})_{2} \mathrm{SO}_{4}: \mathrm{Eu}^{3+}$					$(\mathrm{YO})_{2} \mathrm{SO}_{4}: \mathrm{Eu}^{3+}$				
	Exp value	$C_{4 v}$		$C_{2 v}$		Exp value	$C_{4 v}$		$C_{2 v}$		$\underset{\text { vap }}{\text { value }}$	$C_{4 v}$		$C_{2 v}$	
		Calc value	$\begin{aligned} & \text { Irr } \\ & \text { rep } \end{aligned}$	Calc value	$\begin{aligned} & \text { Irr } \\ & \text { rep } \end{aligned}$		Calc value	$\begin{aligned} & \text { Irr } \\ & \text { rep } \end{aligned}$	Calc value	$\begin{aligned} & \text { Irr } \\ & \text { rep } \end{aligned}$		Calc value	$\begin{aligned} & \text { Irr } \\ & \text { rep } \end{aligned}$	Calc value	$\begin{aligned} & \text { Irr } \\ & \text { rep } \end{aligned}$
${ }^{7} F_{0}$	0	0	A_{1}	0	A_{1}	0	0	A_{1}	0	A_{1}	0	0	A_{1}	0	\boldsymbol{A}_{1}
${ }^{7} F_{2}$	214	209	A_{2}	209	A_{2}	219	219	A_{2}	220	A_{2}	216	216	A_{2}	215	A_{2}
	447	461	E	445	B_{1}	432	464	E	427	B_{1}	431	466	E	430	B_{1}
	473			480	B_{2}	492			496	B_{2}	500			501	B_{2}
${ }^{7} \boldsymbol{F}_{2}$	975	979	E	969	B_{2}	964	979	E	965	B_{2}	967	979	E	968	$\begin{aligned} & B_{2} \\ & B_{1} \\ & A_{2} \\ & A_{1} \\ & A_{2} \end{aligned}$
	990				A_{2}	977			988		980			988	
	1021	1014	\boldsymbol{B}_{2}	1019	B_{1}	1034	1017	B_{2}	1028	A_{2}	1034	1024	B_{2}	1032	
	1075	1084	A_{1}	1073	A_{1}	1079	1089	A_{1}	1072	A_{1}	1080	1088	\boldsymbol{A}_{1}	1073	
		1264	\boldsymbol{B}_{1}	1312	A_{1}		1261	\boldsymbol{B}_{1}	1271	A_{1}		1254	B_{1}	1275	
${ }^{7} F_{3}$	1860	18781902	A_{2}	1866	A_{2}	1871	1882	A_{2}	1867	B_{1}	1869	1882	A_{2}	1866	B_{1}
	1873		E	1870	B_{1}		1905	E	1870	A_{2}		1908	E	1870	A_{2}
	1916			1929	B_{2}	1918			1922	B_{2}	1918			1919	B_{2}
	1967	1958	E	1966	B_{1}	1952	1959	E	1945	B_{1}	1951	1959	E	$\begin{aligned} & 1947 \\ & 1975 \end{aligned}$	B_{1}
	1978			1976	B_{2}	1976			1974	B_{2}	1976				B_{2}
	2002	2007	\boldsymbol{B}_{1}	1994	A_{1}	2008	2014	\boldsymbol{B}_{1}	2008	\boldsymbol{A}_{1}	2012	2019	B_{1}	2009	\boldsymbol{A}_{1}
	2026	2023	B_{2}	2022	A_{2}	2017	2025	B_{2}	2023	A_{2}	2023	2026	B_{2}	2029	\boldsymbol{A}_{2}
${ }^{7} \boldsymbol{F}_{4}$	2729	2723	A_{1}	2723	A_{1}	2731	2720	A_{1}	2735	A_{1}	2735	2724	A_{1}	2738	A_{1}
	2843	2840	A_{2}	2841	A_{2}	2834	2842	A_{1}	2830	A_{2}	2826	2841	A_{2}	2828	A_{2}
	2851	2887	E	2847	B_{1}	2854	2890	E	2859	B_{1}	2859	2899	E	$\begin{aligned} & 2860 \\ & 2901 \end{aligned}$	B_{1}
	2902			2909	\boldsymbol{A}_{1}	2900			2902	\boldsymbol{A}_{1}	2902				A_{1}
	2927	2936	A_{1}	2922	B_{2}	2949	2939	A_{1}	2934	B_{2}	2953	2943	A_{1}	2936	B_{2}
	2986	2988	E	2994	B_{1}	2984	2990	E	2990	B_{2}	2984	2993	E	$\begin{aligned} & 2993 \\ & 3003 \end{aligned}$	B_{2}
	3007			3013	B_{2}	3007			3004	B_{1}	3005				B_{1}
	3031	3017	B_{1}	3028	A_{1}	3036	3027	B_{1}	3042	\boldsymbol{A}_{1}	3037	3029	\boldsymbol{B}_{1}	3045	A_{1}
	3034	3051	B_{2}	3033	A_{2}	3052	3054	B_{2}	3050	A_{2}	3062	3044	B_{2}	3057	A_{1}

References

I. J. J. Pitha, A. L. Smith, and R. Ward, J. Amer. Chem. Soc. 69, 1870 (1947).
2. J. W. Haynes and J. J. Brown, J. Electrochem. Soc. 115, 1060 (1968).
3. G. Blasse and A. Bril, Philips Res. Rep. 23, 461 (1968).
4. G. Pannetier and A. Dereigne, Bull. Soc. Chim. Fr., 1850 (1963).
5. R. Ballestracci and J. Mareschal, Mater. Res. Bull. 2, 993 (1967).
6. L. G. Sillén and K. Lundborg, Z. Anorg. Allg. Chem. 252, 1 (1943).
7. D. H. Templeton and C. H. Dauben, J. Amer. Chem. Soc. 75, 6069 (1953).
8. J. A. Fahey, Proc. Rare Earth Res. Conf. 12th, 762 (1976).
9. D. R. Svoronos et al., C. R. Acad. Sci. Paris Sci. II (Dec. 1982).
10. M. Koskenlinna, M. Leskelä, and L. Niinistö, J. Electrochem. Soc. 123, 75 (1976).
11. M. Koskenlinna and L. Niinistơ, Suom. Kemistil. B 46, 245 (1973).
12. M. Koskenlinna, M. Leskelä, and L. Ninisto, to be published.
13. M. Leskelä and L. Niinistö, J. Therm. Anal. 18, 307 (1980).
14. E. Antic-Fidancev, M. Lemaitre-Blaise, and P. Caro, J. Chem. Phys. 76(6), 2906 (1982).
15. J. Hólsä and P. Porcher, J. Chem. Phys. 75(5), 2108 (1981).
16. J. Hölsä and P. Porcher, J. Chem. Phys. 76(6), 2790 (1982).
17. J. Huang, J. Loriers, and P. Porcher, J. Solid State Chem. 43, 87 (1982).
18. O. K. Moune-Minn and P. Caro, J. Cryst. Spect. Res. 12(2), 153 (1982).
19. P. Caro, J. Less-Common Met. 16, 367 (1968).
20. J. L. Prather, "Atomic Energy Levels in Crystals," NBS Monograph No. 19 (1961).

